
Implementation and Evaluation of
a Fish-Eye Lens for Interactive

Visualization of Features in
Volumetric Datasets

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Klara Brandstätter
Matrikelnummer 1326465

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. (FH) Dr. Christoph Heinzl

Dipl.-Ing. Johannes Weissenböck, BSc

Wien, 23. August 2017
Klara Brandstätter Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Implementation and Evaluation of
a Fish-Eye Lens for Interactive

Visualization of Features in
Volumetric Datasets

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Klara Brandstätter
Registration Number 1326465

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. (FH) Dr. Christoph Heinzl

Dipl.-Ing. Johannes Weissenböck, BSc

Vienna, 23rd August, 2017
Klara Brandstätter Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Klara Brandstätter
Brunnenweg 12
4921 Hohenzell

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. August 2017
Klara Brandstätter

v

Kurzfassung

Die Exploration von Datenvisualisierungen ist eine wichtige Tätigkeit, die längst nicht
mehr nur in der Wissenschaft Verwendung findet. Besonders in den Materialwissenschaf-
ten und den damit verbundenen Industriebereichen ist die Datenanalyse eine nicht mehr
wegzudenkende Methode um mögliche Fehlerquellen oder Schwachstellen aufzudecken,
die während des Fertigungsprozesses entstanden sind, und um die notwendigen Quali-
tätskriterien zu erfüllen. open_iA ist eine Open Source Software, die solche Analysen für
computertomographische Daten von Materialien durchführen kann.
Diese Bachelorarbeit thematisiert das Thema der Datenerforschung und widmet sich der
Implementierung und Integration einer 2D Fish-eye lens in open_iA. Die Fish-eye lens
wurde wegen ihrer Vergrößerungseigenschaften ausgewählt, und weil sie gleichzeitig Focus
und Kontext zur Verfügung stellen kann. Die charakteristische Verzerrung der Fish-eye
lens wurde durch eine Thin-Plate Splinetransformation (TPS2) ermöglicht, die direkt auf
den Datensatz angewendet wird.
Neben der Fish-eye lens existieren noch viele weitere so genannte Magic lenses für die
unterschiedlichsten Arten von Datensätzen und für verschiedenste Anwendungen. Diese
Arbeit gibt einen kurzen Überblick über die gängigsten magischen Linsen. Es folgt eine
Definition der Hard- und Softwarevoraussetzungen. Außerdem werden alte und aktuelle
Designkonzepte der Fish-eye lens diskutiert. Des Weiteren wird der Algorithmus der Thin-
Plate Splinetransformation anhand von Beispieldatensätzen exemplarisch durchgerechnet
und erklärt. Abschließend werden Evaluierungsergebnisse der Fish-eye lens anhand von
verschiedenen Materialdatensätzen gezeigt, um ihre Funktionalität und Verwendbarkeit
zu demonstrieren.

vii

Abstract

The exploration of data visualisations has become an important task and already reaches
beyond scientific purposes. Especially, in material sciences and related industries, data
analysis is crucial for the detection of possible error sources or weak spots, that occurred
during fabrication, to meet the required quality criteria. open_iA is an open source
software that offers such data analysis of computed tomography material data.
This thesis addresses the topic of data exploration by implementing and integrating a 2D
fish-eye lens into open_iA. The fish-eye lens has been chosen due to its magnification
characteristics, that provide focus and context at the same time. The distinct distortion
of the fish-eye lens was achieved by applying a thin-plate spline (TPS2) transformation
to the dataset.
Beside the fish-eye lens, there exist many more magic lenses for different kinds of datasets
and purposes, which will be introduced in a few words. Furthermore, the hard- and
software requirements for the fish-eye lens as well as general design concepts are defined.
Then, a detailed explanation of the thin-plate spline transformation and its algorithm is
given and illustrated with example datasets and step-by-step calculations. Finally, the
fish-eye lens is tested for its functionality and usability with material datasets.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 State of the Art 3

3 Prerequisites and First Overview 9
3.1 Hard- and Software Components . 9
3.2 Integration of the Fish-Eye Lens into open_iA 10
3.3 Concepts . 14

4 Implementation 15
4.1 Used Classes and Functions . 15
4.2 Exemplary Calculation of the Thin-Plate Spline Transformation 16
4.3 Functionality of the Fish-Eye Lens . 31

5 Evaluation and Results 35
5.1 Rock Crystal Dataset . 35
5.2 Pore Dataset . 38
5.3 Fibre Dataset . 40

6 Conclusion 45

List of Figures 47

List of Algorithms 51

Bibliography 53

xi

CHAPTER 1
Introduction

Nowadays, with the continuous growth of big data, it is getting more and more important
to find adequate visualisation techniques [WGK10]. With the possibility to visualize
such multidimensional and multivariate data, there also comes the problem of visual
representations that are completely overcrowded or cluttered with too much information
at once.
Beside zooming and filtering techniques, there exist several concepts to make very complex
visualisations clearer and easier to understand. The concept of „Overview first, zoom
and filter, then details-on-demand“by Shneiderman [Shn96] is well known in visualiza-
tion. Since there are often difficulties with insufficient space for showing overview and
detail at once, the concept of ‚focus and context‘ tries to resolve this by focusing on
small parts of currently relevant information while keeping the context at a less detailed
view[HS17, CKB08, LA94, Hau06]. If the datasets are huge, it is also possible to provide
multiple coordinated views [Rob07], so the information can be observed from different
perspectives. A concept called ‚Linking and Brushing‘ offers linked representations of
different aspects of a dataset. Whenever features in one representation are selected
(brushed) or edited, all the other representations are updated as well. The concept
of ‚Interactive Steering‘ allows the adjustment of parameters during processes of data
acquisition or running simulations to change the outcome or to direct it into preferred
regions of interest [HS17].

Another important concept, which this thesis will describe, are interactive or so called
magic lenses. Such lenses offer different visual representations of the underlying data.
Typically, they are circularly shaped, and it has to be possible to alter position and
size of the lens to guarantee a flexible data exploration. The orientation of a magic
lens is another important factor, but concerns mostly 3D lenses. For 2D circular lenses
orientation would not be meaningful.
The decisive part of an interactive lens is its lens function. This lens function is responsible

1

1. Introduction

for the intended effect the lens should have on the data. It consists of calculations that
are applied to the data in order to achieve the intended visual results. A lens function can
intervene in any stage of the visualisation pipeline. It can either be used to manipulate
pixels in the view stage or to process the values of the data source directly.
Furthermore, what has to be considered is, which parts of the data are affected by the
lens. In general, this concerns data underneath the lens, and often just a subset of the
data to make calculations that the lens performs faster.
In the end, the data underneath the lens and the base visualisation tool have to be joined
to provide a convincing feedback, in order to allow the user to understand how the view
of the lens relates to the original data [BMe+14].
Beside simple magnification lenses, there also exist complex lenses which modify the
data underneath only slightly so that certain requested details can be emphasized for
exploration. Modifications can reach from filtering particular information from the data
to making hidden features visible by moving occluding information aside. Although a
magic lens modifies the underlying information, it should never falsify it. Therefore, the
choice which kind of lens is best suited for specific data has to be considered carefully.

In this thesis, the implementation of a 2D fish-eye lens into the open source visualisation
and analysis software open_iA1 is presented. The algorithm of the fish-eye lens is
explained in detail, and results with different datasets are depicted and discussed. The
advantage of a fish-eye lens is, that it magnifies the data around a selected point without
losing the context of the whole data. This is done by softening the distortion, which is
responsible for the magnification, towards the boarders of the lens, so that a smooth
transition between the data inside and outside the lens can be achieved.
In Chapter 2, an overview of state of the art magic lenses is given, Chapter 3 introduces
the used hardware and software components as well as concepts that lead to the final
version of the fish-eye lens. The implementation of the lens, which is based on a thin-plate
spline transform, is shown using a systematic step-by-step algorithm run in Chapter
4. Chapter 5 presents the results that have been realized by applying the fish-eye lens
to different computed tomography (CT) datasets of carbon and glass fibre reinforced
polymers (CFRP, GFRP) and a CT dataset of a rock crystal. Finally, Chapter 6 concludes
the thesis with a discussion on the findings and some remarks on future work in the field.

1http://www.3dct.at/cms2/index.php/en/software-en/open-ia-en

2

http://www.3dct.at/cms2/index.php/en/software-en/open-ia-en

CHAPTER 2
State of the Art

From 2D to 3D there is a huge variety of magic lenses, with different possibilities of user
interaction and data representation. In this chapter, selected types of existing lenses an
their field of application are presented.

When analysing time series, it is often necessary to eliminate seasonal effects, in order to
normalize the data or to do general temporal transformations. Time series are important
in every domain, from finance over engineering to scientific disciplines. Temporal data
does not depend on other variables. Is uniform and absolute. Therefore, it should be
treated differently than other data. So called ChronoLenses are meant to support users
in their tasks by offering on-the-fly transformations of data points in the focus area and
integration of visual analysis, e.g. of quantitative or derived data [ZCPB11]. In Figure
2.1 a ChronoLens is visible.

Figure 2.1: The ChronoLens is transforming the underlying content for better exploration.

Maps are an established technique to visualize geo-spatial data. However, following
driving directions on maps is often a difficult task since such maps are densely packed
with information. Karnick et al. [KCJ+10] present Detail Lenses. They encircle points
of interest (POI) along a route on the map (see Figure 2.2). Those POIs are shown in
detail through the lenses, whereas the rest of the map is shown as an overview. It is
important that those lenses do not occlude each other or the route. The correct layout of

3

2. State of the Art

the lenses on the map is therefore a crucial aspect.

Figure 2.2: Several Detail Lenses are arranged around the centre of the map and magnify
important POIs along the route.

Volume datasets can pose some obstacles in visualisation as well. Apart from the
difficulties of spatial selection and occlusion, also the datasets in science and medicine
have been growing in size enormously, while the screen resolution cannot keep up.
Interactively configurable Magic Volume Lenses, embedded into the volume rendering,
can offer magnification lens rendering techniques in a focus + context framework. Features
of interest are emphasized and the rest of the volume data is compressed but not clipped
entirely, so the user does not lose the context. In Figure 2.3 a Magic Volume Lens is
applied to a direct volume rendering (DVR) of an engine [WZMK05].

Figure 2.3: DVR of an engine without (a) and with (b) magnification by the embedded
Magic Volume Lens.

4

Data, which employs special lenses is 2D and 3D flow data. Beside the vectors, several
additional aspects, such as derived scalar attributes, vortices or flow topology, have to
be considered when developing appropriate lenses. Gasteiger et al. [GNBP11] propose
the FLOWLENS, a lens designed especially for blood flow and derived data, to explore
cerebral aneurysms and ruptures (see Figure 2.4). This lens has to consider hemodynamics
such as the wall shear stress (WSS) and the inflow jet, and of course, it needs to offer a
visualisation preferably free from unwanted distortions, occlusions or clutter.

Figure 2.4: The FLOWLENS visualizes the blood flow inside an aneurysm with the help
of streamlines. The flow pressure is depicted by the green saturation-coded contour lines.

The Sampling Lens by Ellis et al. [EBD05] is particularly useful for multidimensional
and multivariate data. This circular lens performs random sampling on scatter plots and
parallel coordinate systems, giving the user the possibility to discover hidden trends or
patterns without losing the data context. In Figure 2.5 the Sampling Lens is applied to a
parallel coordinate system.

Figure 2.5: The strongly saturated parallel coordinate system makes it difficult to perceive
the lines on the left and right side (a). The Sampling Lens offers a clearer view of the
dense areas to perceive any hidden trends (b).

5

2. State of the Art

Texts and documents often consist of a mass of data. Querying and the focus on specific
topics (e.g. in a word cloud) are popular ways of representing such data. However, these
approaches do not consider the meanings of words, although many of the words could
be connected to each other by meronyms (part-of relations). Meronyms show a spatial
relationship since they are a part of a whole entity. Chang and Collins [CC13] propose
3D models that contain meronyms of the model on their respective position. On such a
model a lens can be applied. The 3D model’s meronyms can be emphasized with the lens.
Around the lens additional corresponding keywords are depicted as heatmap charts and
the respective text documents, including the words (meronyms) imaged inside the lens,
can be displayed as well. Figure 2.6 shows such a lens applied to a 3D model of a car.

Figure 2.6: The car parts inside the lens are listed next to it. The heatmap chart
underneath every list entry describes the frequency (red = very frequent, beige = less
frequent) in which the names of the car parts appeared in certain documents in an
interval of 4 months.

A common problem with graph data is its ambiguity and edge congestion. The EdgeLens
[WCG03] address edge congestion among other things. This lens reduces the number of
edges inside the lens by curving edges around the lens (see Figure 2.7). This is done for
all edges which do not have their nodes inside the lens. With this technique it is possible
to preserve the node layout but still gain the necessary hidden information.

6

Figure 2.7: Graph data without (a) and with the application of three EdgeLenses (b).
The blue points mark the centre of the lenses. The green and pink coloured edges are
ignored by the EdgeLenses and are not curved around the lenses.

Apart from developing lenses for specific datasets, lenses are also designed to fulfil
particular tasks. They can be used to select POI in complex datasets, or reconfigure
data underneath the lens so the user gets a view at a new layout and gains insight from
a different perspective. Reconfiguration offers e.g. the Layout Lens by Tominski et al.
[TAS09], which reallocates graph nodes and creates overviews of the local neighbourhood
for the analysis of node connectivity (see Figure 2.8). Furthermore, there are lenses for
filtering, to only show desired information, or lenses that offer more or less detail in a
selected region.

Figure 2.8: The focus lies on the red-rimmed node (a). With a local edge lens, edges
that do not belong to the focused node are removed (b). Then, the Layout Lens gathers
all nodes adjacent to the focused node (c). Accumulated nodes in the centre are spread
by a fish-eye lens (d).

7

2. State of the Art

Fish-eye lenses are very well suited for showing more detail through magnification. Their
main fields of application are found in the exploration of geo-spatial data and graph data
[BMe+14]. In the early 90’s, Sakar and Brown already used fish-eye views for graphs,
because of the mentioned advantages of local detail and global context within one view
[SB92, SB94]. In Figure 2.9 a fish-eye lens is applied to a map.1
As shown in the subsequent sections of this thesis, a fish-eye lens can also be used for 2D
data as a context-preserving magnification lens.

Figure 2.9: Cutout of the subway map of Washington D.C. The applied fish-eye lens
magnifies the focused area in the middle. On the border of the focused area, the map is
strongly distorted by the lens to permit a smooth transition between the focused area
and the context.

1http://www.cs.umd.edu/class/fall2002/cmsc838s/tichi/fisheye.html, Accessed:
20.08.2017

8

http://www.cs.umd.edu/class/fall2002/cmsc838s/tichi/fisheye.html

CHAPTER 3
Prerequisites and First Overview

3.1 Hard- and Software Components

The code for the fish-eye lens was implemented in C++ on an Intel R© CoreTM i7-4720HQ
2.60 GHz processor with a Windows 10 Home c© 64-bit operating system. Microsoft
Visual Studio1 Community 2015 (Version 14.0.25425.01 Update 3) was used as integrated
development environment (IDE).

3.1.1 open_iA

The fish-eye lens is an additional feature which is integrated into the framework of the
open source software open_iA2. open_iA supports users in exploring and analysing
computed tomography (CT) datasets by offering visual analysis and data processing tools,
mainly focused on volumetric and polygonal datasets. The core of open_iA consists
of functionalities such as loading of volumetric datasets as well as displaying them in
different views and applying transfer functions. It is possible to load datasets using a
variety of file formats - Raw images (*.raw, *.rec, *.vol), MetaImage (*.mhd, *.mha),
STL files or VGI files, just to name a few. During the implementation of the fish-eye
lens, MetaImage data from a rock crystal and from pores of fibre-reinforced polymers
(FRPs) have been used for testing.
When a dataset is loaded into open_iA the core provides a 3D rendering view and three
2D axis-aligned slice views of the volumetric data. Also a histogram view can be used to
set transfer functions which are then assigned to the data in the 3D renderer and the
three 2D slicer views. To examine the various intensities of a dataset, a profile plot is
used that depicts the intensities along a line through the dataset. Furthermore, it is
possible to load more than one volumetric dataset into the 3D renderer.

1https://www.visualstudio.com/, Accessed: 20.08.2017
2https://github.com/3dct/open_iA, Accessed: 20.08.2017

9

https://www.visualstudio.com/
https://github.com/3dct/open_iA

3. Prerequisites and First Overview

Beside the core functionalities, open_iA integrates several additional image processing
filters as well as analysis and visualization tools3 for different scenarios. These tools,
for example, allow the exploration of multi-modal and multi-scalar data, or facilitate
the analysis of data from FRPs and help determining their porosity. Furthermore, they
facilitate the detection and classification of defects in glass fibre-reinforced polymers
(GFRPs), and the parameter space of multi-channel segmentation algorithms can be
explored visually as well [FMH16].

3.1.2 Libraries

open_iA is based on the open-source application development framework Visualisation
Toolkit4 (VTK) Version 7.0.0 from Kitware collection [SML06]. VTK offers a C++
library with a diversity of algorithms for 3D computer graphics, image processing and
visualization.
The vtkThinPlateSplineTransform5 class of the VTK library is primarily responsi-
ble for the characteristic distortion of the implemented fish-eye lens. Detailed information
about this class and other employed VTK classes are discussed later.
The Insight Segmentation and Registration Toolkit6 (ITK) Version 4.10.0 offers segmenta-
tion and registration algorithms for multidimensional data [JMI15]. Its libraries include
many tools for image analysis which are used or adapted by open_iA. Since ITK is not
needed for the implementation of the fish-eye lens, it will not be explained any further.
The cross-platform GUI-Toolkit Qt7 Version 5.6.0 supports the open_iA framework with
an easily usable graphical user interface. Qt is needed for the fish-eye lens for general
user interactions such as the keyboard inputs and mouse movements. Furthermore, it
provides widgets to seamlessly integrate VTK.
First implementation attempts of the fish-eye lens aimed at using Qt-based approaches
for creating the lens. The difficulties and the undesirable outcomes, such as flickering
of the lens and poor performance, that came with the QtWidget8 and QVTKWidget29

classes (for the shape of the lens) lead to discarding this idea.

3.2 Integration of the Fish-Eye Lens into open_iA

The fish-eye lens is a feature that extends the core functionality of open_iA. It is a 2D
circular lens that can be activated separately in all of the three 2D slice views as soon as
a volumetric dataset has been loaded into open_iA.
By clicking with the left mouse button inside the XY-, the YZ- or the XZ-slice view

3https://github.com/3dct/open_iA/wiki/Tools, Accessed: 20.08.2017
4http://www.vtk.org/, Accessed: 20.08.2017
5http://www.vtk.org/doc/nightly/html/classvtkThinPlateSplineTransform.html,

Accessed: 20.08.2017
6https://itk.org/, Accessed: 20.08.2017
7https://www.qt.io/, Accessed: 20.08.2017
8http://doc.qt.io/qt-5/qwidget.html, Accessed: 20.08.2017
9http://www.vtk.org/doc/nightly/html/classQVTKWidget2.html, Accessed: 20.08.2017

10

https://github.com/3dct/open_iA/wiki/Tools
http://www.vtk.org/
http://www.vtk.org/doc/nightly/html/classvtkThinPlateSplineTransform.html
https://itk.org/
https://www.qt.io/
http://doc.qt.io/qt-5/qwidget.html
http://www.vtk.org/doc/nightly/html/classQVTKWidget2.html

3.2. Integration of the Fish-Eye Lens into open_iA

and by pressing the O-key on the keyboard the fish-eye lens is activated. While the lens
stays enabled, it follows the movements of the mouse cursor. Pressing the O-Key again,
the fish-eye lens is disabled and vanishes. Figure 3.1 shows a 2D slice of the pore dataset
(pores.mhd), before and after activating the fish-eye lens. The centre of the lens is given
by the position of the mouse cursor. The fish-eye lens distortion which is applied to the
image data in Figure 3.1(b) can be seen clearly compared to the non-distorted data in
Figure 3.1(a).

Figure 3.1: XZ-slice view of the pore dataset (pores.mhd) before (a) and after (b)
activating the fish-eye lens (a ’cyan’ colour transfer function has been applied to the data
for better visibility). The orange circle represents the fish-eye lens.

11

3. Prerequisites and First Overview

Note: The context of the image data does not get lost, since the fish-eye lens provides a
smooth transition from the magnified centre of the lens to the normal unmagnified data
outside the circle.

The size of the fish-eye lens radius and also the degree of distortion can be adjusted by
means of keyboard input. Pressing the plus-key increases the radius of the fish-eye
lens and pressing the minus-key decreases the radius respectively. Changing the degree
of the lens distortion works similar. The key combination STRG + plus magnifies the
distortion, whereas STRG + minus reduces it. The larger the lens radius gets, the less
the influence of the distortion becomes, which means that the distortion might need to
be adjusted again. This is due to the increasing radius. A large lens, however, can be
distorted much more, than a smaller lens, because small lenses, cannot offer so many
magnifying distortion degrees, without corrupting the image data.
The default radius of the lens is 80.0 pixels. It can be scaled down to a minimal radius of
2.0 pixels (for very small datasets) and scaled up to a maximal radius of 220.0 pixels. The
distortion degrees go from no distortion at all to a strong distortion that only just delivers
satisfying results without confusing the user too much. The degrees of the distortion
are actually based on a resizeable radius too, that is simply invisible for the users. The
principles on how the distortion works exactly are given later during the implementation
details.
The lens radius and the distortion degree settings are stored between disabling and
enabling of the fish-eye lens, as long as the open_iA core is running. Figure 3.2(a) and
Figure 3.2(b) show examples of a fish-eye lens with a radius of 150.0 pixels and different
distortion or magnification degrees.

12

3.2. Integration of the Fish-Eye Lens into open_iA

Figure 3.2: XZ-slice view of the pore dataset (pores.mhd) with a fish-eye lens radius of
150.0 pixels and very little distortion (a) and strong distortion (b). The orange circle
represents the fish-eye lens.

13

3. Prerequisites and First Overview

3.3 Concepts
The open_iA core features a rectangular magic lens that can be enabled in the three
slice views. When two datasets have been loaded into open_iA, this magic lens makes
it possible show one of the two datasets blended in on top of the other dataset. The
magic lens basically consists of an iAFramedQVTKWidget2, which is a subclass of the
QVTKWidget2. With the QVTKWidget2 a VTK render window can be displayed inside
a Qt window. It inherits the QGLWidget10 class from the Qt library. The QGLWidget
can be used like any other QWidget, but offers additional commands for OpenGL
rendering.
The initial approach for the fish-eye lens was based on the classes used for the rectangular
magic lens implementation. The idea was, to use the iAFramedQVTKWidget2 as the
lens and let the transformation (distortion) only happen within this widget. The widget
would be then overlaid onto the original data. However, this attempt was very error-prone,
and despite correct calculations (in external test slicer views), the transform never worked
properly inside the widget for the lens.
Another problem was the rectangular shape of the widget. The typical shape of a lens is
circular and not rectangular, but since Qt does not offer circular widgets, it would have
led to additional effort to find a solution for programming a seemingly circular widget,
that would not cause too much performance loss.
Due to these difficulties, it was decided to drop the initial approach and to come up with
a new one.
It turned out, that not using any widget at all for the lens, worked well: The transform
for the fish-eye lens is now applied on the whole 2D data available in the slice view. By
setting the source and target landmarks for the transform accordingly across the slice
image, the distortion can be narrowed down to a given radius. The positioning of the
landmarks is a crucial step towards a convincing visual representation of the lens. On
the one hand, with too few fixed landmarks, the distortion affects on its borders most of
the image data which leads to a very turbulent distortion while moving the lens. On the
other hand, too many fixed landmarks lead to long processing times and a juddering lens,
even though the distortion can be controlled very well in a defined radius. A detailed
image of the fish-eye lens with visible source and target landmarks is depicted in the next
Chapter in Figure 4.2. Finally, for depicting the actual lens, a simple circle with that
given radius is drawn around the centre of the distortion.

10http://doc.qt.io/qt-4.8/qglwidget.html, Accessed: 20.08.2017

14

http://doc.qt.io/qt-4.8/qglwidget.html

CHAPTER 4
Implementation

4.1 Used Classes and Functions

This section gives a brief overview of the classes and functions that are used for the
implementation of the fish-eye lens, including classes and functions from open_iA as well
as from the VTK library.
The code for the fish-eye lens transform is entirely integrated into the
iASlicerWidget class. The iASlicerWidget class is responsible for several in-
teractions with the three 2D slice views of open_iA. As the fish-eye lens is an additional
feature for the slice views, it has been decided to integrate the code there. Inside the
iASlicer Widget class, two new functions are responsible for the initialisation and
the functionality of the fish-eye lens:

• initializeFisheyeLens() is responsible for initializing the
vtkThinPlateSplineTransform. The vtkThinPlateSplineTransform
is responsible for calculating the distortion based on defined source and target
landmarks. Detailed information about how the transform works is given in the
following section. Furthermore, source and target landmarks and corresponding
circles for visualizing them (for testing purposes) are initialized, as well as a circle
variable representing the lens. It sets the respective mappers for the actors of the
renderer of the slice views. The actors are needed for depicting the lens in the slice
view and they were also helpful during implementation for showing the positions of
the landmarks.

• updateFisheyeTransform() is doing the actual work and updates the trans-
form whenever the mouse moves. It sets new source and target landmarks and
passes them to the vtkThinPlateSplineTransform which is then applied to
the data in the current slice view.

15

4. Implementation

Two already existing functions have been extended to provide interaction with the fish-eye
lens:

• keyPressEvent() handles keyboard input and processes the enabling and dis-
abling of the fish-eye lens by pressing the O-key. It is also responsible for increasing
and decreasing the lens radius and the distortion.

• mouseMoveEvent() updates the fish-eye transform whenever the mouse moves
(as long as the lens is enabled).

The iASlicerData class stores information about the data in the slice views and offers
multiple operations that can be executed on the data. A getter (getSliceNumber())
for the number of the current data slice that is visible in the slicer has been added. The
number of the slice is important for calculating the correct landmarks in the different
slice views in the updateFisheyeTransform()-function.

4.2 Exemplary Calculation of the Thin-Plate Spline
Transformation

Thin-plate splines (TPS) are a special case of polyharmonic splines. They are used for
data interpolation and smoothing [Duc77].
The vtkThinPlateSplineTransform is a non-linear warp transform. It requires a
set of source and target landmarks that define the shape of the transform. Points on a
mesh that are close to a source landmark are moved to a place near to a corresponding
target landmark. Points that are not lying on the mesh are interpolated smoothly.
The data in the slice views is in 2D, meaning the XY-slices have constant Z-values, the
YZ-slices have constant X-values and the XZ-slices have constant Y-values for every
landmark on the slice. Therefore, an appropriate radial basis function (RBF) kernel has
to be used for calculating a correct thin-plate spline warp. The default kernel for 2D
is the R2LogR kernel (in VTK the respective function is SetBasisToR2LogR()). For
3D data the R kernel has to be applied (SetBasisToR()). Furthermore, it would be
possible to specify a user-defined radial basis function, but this would also mean that the
transform no longer was a true thin-plate spline transform.
The interpolation and also the notation in the source code of the
vtkThinPlateSplineTransform has been inspired by Bookstein’s Thin Plate Spline
algorithm [Boo97, Boo89] and by the online work published by Tim Cootes, Professor of
Computer Vision at the University of Manchester.
With the aid of the vtkThinPlateSpline.cxx file and the corresponding header file
by Ken Martin, Will Schroeder and Bill Lorensen, the functionality of the thin-plate
spline transform is explained. The naming of variables in this chapter is based on the
naming from the source code and Bookstein’s articles.

16

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

Apart from the header file, the vtkThinPlateSpline.cxx1 additionally includes the
vtkMath.h2, the vtkObjectFactory.h3 and the vtkPoints.h4 header.
vtkMath.h is needed for common math operations such as vector and matrix operations
(conversions from degrees to radians or the provision of constants). vtkObjectFactory.h
creates vtk objects. vtkPoints.h is used for the representation of 3D points. Its
data model is an array of x-y-z triplets and can be accessed by point or cell ID. The
vtkPoints.h is essential for the definition of the source and target landmarks.
The vtkThinPlateSpline class is a subclass of vtkWarpTransform5. This super-
class supports nonlinear geometric transformations. vtkWarpTransform is again a
subclass of vtkAbstractTransform6, which is the superclass for all geometric VTK
transforms, such as warp transforms and also homogeneous (linear) transforms.
On the following pages, the algorithm of the thin-plate spline transform is explained in
detail:
The radial basis function is defined as U(r) = r2 ∗ ln(r). Because of r2 the thin-plate
spline can be denoted as TPS2. Depending on the exponent of r several TPSn are
possible for all n, where n is even. However, this algorithm only uses TPS2.
Bookstein uses the notation log instead of ln in his description of the thin-plate spline
algorithm. The notation for the logarithm in the source code by Schroeder et al. is
also log, since the log function computes the natural logarithm to the base-e in C++.
To avoid confusion between the familiar notation log for the base-10 logarithm and the
notations of Bookstein and Schroeder et al., this thesis refers to the natural logarithm as
ln.
Let N be the number of source landmarks (in the current implementation N = 32) and
D the constant dimension with D = 3.
At first, a few matrices have to be defined: W [rows][columns] is the output weights
matrix with rows = N +D + 1 and columns = D. W is the essential matrix that is
necessary for the transformation.
The size of the combined linear rotation and scale matrix is given by A[3][3] and the
linear translation is given by the vector c[3].
Furthermore, the following input matrices are needed: L[N +D + 1][N +D + 1] and
X[N +D + 1][D]. With the help of these matrices, the weights matrix W can be calcu-
lated in a later step.

1https://github.com/Kitware/VTK/blob/master/Common/Transforms/
vtkThinPlateSplineTransform.cxx, Accessed: 20.08.2017

2http://www.vtk.org/doc/nightly/html/classvtkMath.html, Accessed: 20.08.2017
3http://www.vtk.org/doc/nightly/html/classvtkObjectFactory.html, Accessed:

20.08.2017
4http://www.vtk.org/doc/nightly/html/classvtkPoints.html, Accessed: 20.08.2017
5http://www.vtk.org/doc/nightly/html/classvtkWarpTransform.html, Accessed:

20.08.2017
6http://www.vtk.org/doc/nightly/html/classvtkAbstractTransform.html, Accessed:

20.08.2017

17

https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkThinPlateSplineTransform.cxx
https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkThinPlateSplineTransform.cxx
http://www.vtk.org/doc/nightly/html/classvtkMath.html
http://www.vtk.org/doc/nightly/html/classvtkObjectFactory.html
http://www.vtk.org/doc/nightly/html/classvtkPoints.html
http://www.vtk.org/doc/nightly/html/classvtkWarpTransform.html
http://www.vtk.org/doc/nightly/html/classvtkAbstractTransform.html

4. Implementation

The matrix L consists of four submatrices:

L =
∥∥∥∥∥K P
P T O

∥∥∥∥∥ (4.1)

It has to be noted, that the bottom-right (N×(D+1))-submatrix O consists of zeros. P T
is the transposed matrix of P . P consists of 1’s and the 32 source landmark coordinates
that are listed in Figure 4.1.

P =

∥∥∥∥∥∥∥∥∥
1 x0 y0 z0
1 x1 y1 z1
...
1 xN−1 yN−1 zN−1

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
1 0 493.5 0
1 0 493.5 4194.75
...
1 6326.68 493.5 3814.58

∥∥∥∥∥∥∥∥∥ , (D + 1)×N, and

(4.2)

P T =

∥∥∥∥∥∥∥∥∥
1 1 ... 1
0 0 ... 6326.68

493.5 493.5 ... 493.5
0 4194.75 ... 3814.58

∥∥∥∥∥∥∥∥∥ , (N)× (D + 1). (4.3)

Since the landmarks from Figure 4.1 have been calculated in the XZ-slicer view, the
Y-coordinate is always the same. The coordinates in the first two rows P correspond
to the bottom-left and the middle-left border landmarks (red circles) in Figure 4.2, the
coordinate of the last row corresponds to the 31st landmark (red circle) at the innermost
landmark circle. In Figure 4.2, the small red circles show the position of the source
landmarks, the green dots the position of the target landmarks.
The reasons why it has been decided to use 32 source and target landmarks are explained
as follows: The 8 source and target landmarks around the border of the slicer image
make sure that pixels far outside the fish-eye lens are not so much affected by the TPS2
anymore. If there were only 4 landmarks at each corner of the image, moving the fish-eye
lens towards the edges of the image would result in edges that are strongly bent inwards
because of the TPS2. Another 8 source and target landmarks are needed to define
the region of the distortion by the fish-eye lens (yellow numbered landmarks in Figure
4.2). Fewer landmarks would lead to an angular shaped fish-eye distortion. These 16
landmarks alone do not suffice to prevent the part of the image outside the fish-eye lens
from strong distortions due to the TPS2. This is why two additional stabilizing source
and target landmark circles (with 8 landmarks each) are arranged around the fish-eye
lens. They keep the distortion restricted. Adding more of these stabilizing circles would
lead to even better results concerning the restricted distortion, but it would also result
in a considerable loss in performance.

18

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

Figure 4.1: IDs’ and coordinates in physical space (bounds) and image space (extent) of
the 32 source and target landmarks depicted in Figure 4.2. The blue, orange and yellow
landmarks have identical source and target positions and serve as stabilisation for the
transform. The green source and target landmarks are responsible for the actual lens
distortion. Because of the XZ-slice, the Y values are constant. The values between the
brackets (x, y, z), represent the same landmark coordinates but in image space.

19

4. Implementation

For the submatrix K the distances between two source landmarks, Pi and Pj , are needed,
which can be written as rij = |Pi − Pj |. The distance rij is the variable for the radial
basis function U(rij).
The resulting submatrix K looks as follows:

K =

∥∥∥∥∥∥∥∥∥
0 U(r0,1) ... U(r0,N−1)

U(r1,0) 0 ... U(r1,N−1)
...

U(rN−1,0) U(rN−1,1) ... 0

∥∥∥∥∥∥∥∥∥ , (N×N). (4.4)

Next, rij has to be calculated for all source landmarks Pi and Pj .

r0,0 = 0,

r0,1 = |

 0
493.5

0

−
 0

493.5
4194.75

 | = √
−4194.752 = 4194.75 = r1,0,

...

r0,31 = |

 0
493.5

0

−
6326.68

493.5
3814.58

 | = √
−6326.682 + (−3814.582) = 7387.69 = r31,0,

r1,0 = |

 0
493.5

4194.75

−
 0

493.5
0

 | = √4194.752 = 4194.75 = r0,1,

r1,1 = 0,
...

r1,31 = |

 0
493.5

4194.75

−
6326.68

493.5
3814.58

 | = √
−6326.682 + 380.172 = 6338.09 = r31,1,

...

r31,0 = |

6326.68
493.5

3814.58

−
 0

493.5
0

 | = √
6326.682 + 3814.582 = 7387.69 = r0,31,

r31,1 = |

6326.68
493.5

3814.58

−
 0

493.5
4194.75

 | = √
6326.682 + (−380.172) = 6338.09 = r1,31,

...
r31,31 = 0. (4.5)

20

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

Figure 4.2: Source (red) and target (green) landmarks of the thin plate spline transform.
The landmarks are arranged counter-clockwise and the landmarks’ IDs and coordinates
correspond to the values in Figure 4.1.

It is evident from ri,j = rj,i that the matrix K is symmetric regarding the principal
diagonal.
Given all rij the radial basis function for the TPS2 can be determined. The RBF
used in the source code of vtkThinPlateSplineTransform.cxx slightly differs
from the algorithm described in Bookstein’s paper [Boo89]. Bookstein uses the RBF
U(r) = r2 ∗ ln(r2), whereas Schroeder et al. use U(rσ) = (rσ)2 ∗ ln(rσ). For this application
(and per default) σ = 1.0, which leads to the originally defined RBF U(r) = r2 ∗ ln(r). σ
simply defines the stiffness of the spline.

21

4. Implementation

U(r0,0) = U(0) = 0,
U(r0,1) = U(4194.75) = 4194.752 ∗ ln(4194.75) = 1.4678× 108

...
U(r0,31) = U(7387.69) = 7387.692 ∗ ln(7387.69) = 4.8616× 108

U(r1,0) = U(4194.75) = 4194.752 ∗ ln(4194.75) = 1.4678× 108

U(r1,1) = U(0) = 0,
...

U(r1,31) = U(6338.09) = 6338.092 ∗ ln(6338.09) = 3.5167× 108

...
U(r31,0) = U(7387.69) = 7387.692 ∗ ln(7387.69) = 4.8616× 108

U(r31,1) = U(6338.09) = 6338.092 ∗ ln(6338.09) = 3.5167× 108

...
U(r31,31) = U(0) = 0. (4.6)

With the solutions of the 32 RBFs, the submatrix K can be built:

K =

∥∥∥∥∥∥∥∥∥
0 1.4678× 108 ... 4.8616× 108

1.4678× 108 0 ... 3.5167× 108

...
4.8616× 108 3.5167× 108 ... 0

∥∥∥∥∥∥∥∥∥ , (32× 32). (4.7)

Finally, the matrix L is recomposed of the four submatrices K, P , P T and O:

L =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1.4678× 108 ... 4.8616× 108 1 0 493.5 0
1.4678× 108 0 ... 3.5167× 108 1 0 493.5 4194.75

...
4.8616× 108 3.5167× 108 ... 0 1 6326.68 493.5 3814.58

1 1 ... 1 0 0 ... 0
0 0 ... 6326.68 0 0 ... 0

493.5 493.5 ... 493.5
0 4194.75 ... 3814.58 0 0 ... 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (36× 36).

(4.8)

22

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

In the next step, the matrix X[N +D + 1][D] is filled row-wise with the coordinates of
the 32 target landmarks. The last four rows are completed with zeros:

X =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 493.5 0
0 493.5 4194.75
...

6412.97 493.5 4631.29
6148.49 493.5 5269.81
5509.97 493.5 5534.29
4871.46 493.5 5269.81
4606.97 493.5 4631.29
4871.46 493.5 3992.77
5509.97 493.5 3728.29
6148.49 493.5 3992.77

0 0 0
0 0 0
0 0 0
0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (36× 3). (4.9)

The first 24 target landmarks (ID 0 - 23 in Figure 4.1) have the same coordinates as
the source landmarks (red and green points positions are identical). That is because the
neighbourhood of those landmarks is not meant to be affected by the transform. If source
and target landmarks are identical, the transform of the image looks like the original
slicer image. Only the circular arranged source and target landmarks of the innermost
landmark circle (Figure 4.2) vary in coordinates. Hence, this area visibly transforms
according to the thin-plate spline transform.
For calculating the weights matrix W [N +D+ 1][D], the following matrix multiplications
have to be performed: W = V ∗ w−1 ∗ V T ∗X.
V [36][36] is the Jacobian matrix of L and includes the eigenvectors that are orthogonal,
because L is a real symmetric matrix.
w[36][36] is a diagonal matrix consisting of 36 inverted singular values. Since the matrix
L is real symmetric it is also normal, which means, that the singular values simply
correspond to the absolute values of the 36 eigenvalues of L. The inverse matrix w−1 is
needed, therefore, the singular values (s) are inverted. A singular value is only inverted,
when its value divided by the maximum singular value (smax) is bigger than 10−16

(s/smax > 10−16, withsmax = 6.64× 109), otherwise it is zero.
V T is the transposed Jacobian matrix V and X[36][3] contains the 32 target landmarks’

23

4. Implementation

coordinates (and four rows filled with zeros) as mentioned above.

V =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0.3914 −0.5418 −0.1215 ... 0.2341 −0.5272
0.2538 0.0031 −0.2469 ... −0.1144 −0.3411
0.3674 0.5301 −0.1959 ... −0.4659 −0.3319

...
...

...
...

...
...

0.1146 0.0737 −0.1814 ... 0.0862 0.1374
7.58× 10−10 5.56× 10−11 1.64× 10−10 ... 1.29× 10−13 −5.29× 10−10

3.64× 10−6 −2.12× 10−7 −3.07× 10−6 ... −1.48× 10−6 −5.96× 10−6

3.74× 10−7 2.74× 10−8 8.11× 10−8 ... 6.35× 10−11 −2.61× 10−7

3.33× 10−6 −1.72× 10−6 2.21× 10−6 ... 4.46× 10−6 −3.46× 10−6

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (36× 36).

(4.10)

The transposed matrix V T is not depicted, as the calculation is straight forward.

w−1 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1.51× 10−10

1.76× 10−8

. . . 0
18.85

0 16980.8
. . .

3.08× 10−10

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (36× 36).

(4.11)

Multiplying V ∗ w−1 ∗ V T ∗X results in the weights matrix W .

W =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

3.78× 10−7 −9.95× 10−21 4.85× 10−7

−6.09× 10−6 1.09× 10−20 −6.07× 10−7

−2.90× 10−7 −2.51× 10−22 3.29× 10−9

−4.85× 10−6 −9.88× 10−20 1.14× 10−5

5.12× 10−6 4.32× 10−20 5.39× 10−6

2.86× 10−5 5.12× 10−20 −3.01× 10−6

2.39× 10−6 −2.93× 10−21 −3.18× 10−6

−2.82× 10−6 −3.57× 10−20 −7.44× 10−6

0.0022 1.01× 10−18 −1.22× 10−6

0.0015 3.03× 10−18 0.0015
−1.20× 10−6 1.08× 10−18 0.0022

...
...

...
0.0004 0.0020 1.37× 10−6

1.0108 9.83× 10−17 0.0001
0.2197 0.9999 0.0007

1.45× 10−5 1.58× 10−16 1.0139

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(4.12)

24

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

Before the thin-plate spline transform can be applied on every point of the 2D slice image,
the linear portion of the warp transform is checked. According to Schroeder et al.7 this
check is currently very tenuous. For this check, the linear rotation and scale matrix A is
needed. A consists of the last three rows of W :

A =

∥∥∥∥∥∥∥
1.0108 9.83× 10−17 0.0001
0.2197 0.9999 0.0007

1.45× 10−5 1.58× 10−16 1.0139

∥∥∥∥∥∥∥ (4.13)

It is simply checked, if the determinant of A is < 10−16. In case it is, the absolute values
of the three column vectors are determined, and again, it is checked, if the absolute
values are < 10−16: √

a2
0,j + a2

1,j + a2
2,j < 10−16, for j = 0, 1, 2. (4.14)

For absolute values < 10−16 of either the first and the second, the first and the third, the
second and the third column vector or all three column vectors, the rotation and scale
matrix A turns to the identity matrix:

A =

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥∥ (4.15)

If the first, the second or the third absolute value is < 10−16, the resulting matrices look
like this:

A1 =

∥∥∥∥∥∥∥
1 0 0
0 1 a1,2
0 a2,1 1

∥∥∥∥∥∥∥ , 1st absolute value < 10−16,

A2 =

∥∥∥∥∥∥∥
1 0 a0,2
0 1 0
a2,0 0 1

∥∥∥∥∥∥∥ , 2nd absolute value < 10−16,

A3 =

∥∥∥∥∥∥∥
1 a0,1 0
a1,0 1 0
0 0 1

∥∥∥∥∥∥∥ , 3rd absolute value < 10−16. (4.16)

(4.17)

The values of ai,j , with i, j = 0, 1, 2, are the same as in the initial matrix A in (4.13).
At last, the linear translation vector c[3]. c consists of the cell values of the 32th row of
W from left to right:

C =

∥∥∥∥∥∥∥
0.0004
0.002

1.37× 10−6

∥∥∥∥∥∥∥ (4.18)

7https://github.com/Kitware/VTK/blob/e68a7fe93758c1d46bd42486958b2ebb7819cbb3/
Common/Transforms/vtkThinPlateSplineTransform.cxx#L322, Comment from the source
code, line 322. Accessed: 20.08.2017

25

https://github.com/Kitware/VTK/blob/e68a7fe93758c1d46bd42486958b2ebb7819cbb3/Common/Transforms/vtkThinPlateSplineTransform.cxx#L322
https://github.com/Kitware/VTK/blob/e68a7fe93758c1d46bd42486958b2ebb7819cbb3/Common/Transforms/vtkThinPlateSplineTransform.cxx#L322

4. Implementation

In this sample iteration of the thin-plate spline transform algorithm, the determinant
of A results in det(A) = 1.02488, which is >> 10−16, so the calculations of the absolute
values of the column vectors are not necessary and A stays the same.
The calculations and the construction of all the matrices given in this section are performed
whenever the mouse moves over the 2D slice image and new source and target landmarks
are selected. The vtkThinPlateSplineTransform function InternalUpdate()
handles these processing steps. InternalUpdate() is called by the Update() func-
tion of vtkAbstractTransform.

Apart from InternalUpdate(), another function, namely
ForwardTransformPoint(), is responsible for the actual transformation of every sin-
gle point between the landmarks. ForwardTransformPoint() is called by
InternalTransformPoint() of the superclass vtkWarpTransform. The argu-
ments of both functions consist of a double array of point coordinates
(input[3]={x,y,z}) to be transformed, and a double array in which the newly trans-
formed point coordinates are going to be stored (output[3]={ xnew,ynew,znew}).
InternalTransformPoint() is again called by TransformPoints() of the super-
class vtkAbstractTransform. The input parameters of TransformPoints() are
two vtkPoints arrays, one for the input points and one for the transformed output
points.
The procedure of this function is described subsequently:
Essential for the computation of the transformation of a point is the previously built
weights matrix W , the linear rotation and scale matrix A and also the translation vector
c.
As already explained, the function ForwardTransformPoint() needs an input point
that is transformed to an output point. In Figure 4.3, the red cross marks the position
of the input point taken for the transformation. Its approximate coordinates are x =
507, y = 47 and z = 487].
At this point, is has to be noted, that the described algorithm by Schroeder et al.8 does
not take the point coordinates from the slice image, to be exact, the algorithm does not
use the extents9 of the image, but a physical extent (bounds).
The extent of an image (image space) is the number of voxels in each dimension, ignoring
the size of a voxel. The pores.mhd dataset that is used for this algorithm example has an
extent of [0, 799] in the x-direction, [0, 74] in the y-direction and [0, 799] in the z-direction:

extentimage =
[
xmin xmax ymin ymax zmin zmax

]
=
[
0 799 0 74 0 799

]
(4.19)

This means that the pores.mhd dataset has a size of 800× 75× 800 voxels, starting with
the first voxel indices at 0 in every direction.

8https://github.com/Kitware/VTK/blob/master/Common/Transforms/
vtkThinPlateSplineTransform.cxx, Accessed: 20.08.2017

9http://www.vtk.org/Wiki/VTK/Tutorials/Extents, Accessed: 20.08.2017

26

https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkThinPlateSplineTransform.cxx
https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkThinPlateSplineTransform.cxx
http://www.vtk.org/Wiki/VTK/Tutorials/Extents

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

However, the physical extent (or bounds), that is needed for the thin-plate spline algorithm
additionally takes into account the spacing of the voxels and the origin of the dataset
in physical space. The pores.mhd dataset has a voxel spacing of 10.5 in every three
dimensions and its origin at [0, 0, 0]. Therefore, the physical extent calculates from

bounds = extentimage ∗ spacing + origin. (4.20)

This is the cause, why the values of the landmark coordinates from Figure 4.1 differ from
the actual size of the dataset.
Knowing this, it is necessary to convert the input point coordinates [507, 47, 487] that
have been selected from the slice image for the ForwardTransformPoint() function
from image space to physical space.

pinput =

507 ∗ 10.5 + 0
47 ∗ 10.5 + 0
487 ∗ 10.5 + 0

 =

5323.5
493.5
5113.5

 (4.21)

With the input point pinput in physical space coordinates, finally, the point transformation
can be performed to get the preliminary output point coordinates pinterim. First, the
non-linear part of the transformation is calculated.
For this reason, the distances (absolute values) of the input point (pinput) to every one of
the 32 source landmarks (spi) are computed. Those distances ri, with 0 ≤ i ≤ 31 serve
as argument for the function U(ri) = r2

i ∗ ln(ri). Actually, ri would be multiplied by the
inverse σ (the value for the stiffness of the spline): ri ∗ 1/σ. But since σ = 1 this term
drops out.
U(ri) is then multiplied by the ith row of the weights matrix W [32][3] and is summed up
for all i = 0, .., 31. The resulting point is q:

ri = |pinput − spi|, for 0 ≤ i ≤ 31;

qx =
31∑
i=0

U(ri) ∗ wi,1 = −38.181,

qy =
31∑
i=0

U(ri) ∗ wi,2 = −7.61× 10−12,

qz =
31∑
i=0

U(ri) ∗ wi,3 = −402.834. (4.22)

Second and last, the affine transformation is applied to q to get pinterim. Therefore, the
translation vector c is added to pinput and pinput is then multiplied by the rotation and
scale matrix A:

pinterimx = qx + c0,0 + (pinputx ∗ a0,0) + (pinputy ∗ a1,0) + (pinputz ∗ a2,0) = 5451.4,
pinterimy = qy + c1,0 + (pinputx ∗ a0,1) + (pinputy ∗ a1,1) + (pinputz ∗ a2,1) = 493.5,
pinterimz = qz + c2,0 + (pinputx ∗ a0,2) + (pinputy ∗ a1,2) + (pinputz ∗ a2,2) = 4782.89.

(4.23)

27

4. Implementation

Figure 4.3: The red cross indicates the position of the point pinput that is taken for the
ForwardTransformPoint() function. The point’s x-y-z-coordinates in image space
are approximately [507, 47, 487]. In physical space they are [5323.5, 493.5, 5113.5].

Because of the many decimal places and the partially very small and big values of the
intermediate results, rounding has been necessary to provide somewhat clear results
throughout this algorithm example. Those clear results, however, implicate quite a loss in
precision that cannot be ignored, which is why the exact intermediate results and matrix
values that have been computed with C++ are used for the preliminary transformed
output point pinterim.
To have a better comparison of the input and output point coordinates, pinterim is
converted back to the image extents (pixel indices):

index = bounds÷ spacing − origin; (4.24)

pinterim =

 5451.4
493.5

4782.89

÷ 10.5− 0 ≈

519
47
456

 . (4.25)

Altogether, with every mouse move over one of the three slice images, new source

28

4.2. Exemplary Calculation of the Thin-Plate Spline Transformation

Figure 4.4: The preliminary output point coordinates of pinterim correspond to the
point in this inversely transformed slice image. The inverse transform of the lens-like
magnification distortion results in a downsized distortion of the area inside the lens.

and target landmarks are assigned to the thin-plate spline transform, that processes
them and calculates a new weights matrix W and resulting rotation and scale matrix
A, and transformation vector c. With those two matrices and the vector, the points of
the slice image that are nearby specific source landmarks are transformed towards the
corresponding target landmarks.
Obviously, the coordinates of the preliminary output point pinterim [519, 47, 456] that
have been retrieved throughout this algorithm example do not match the transformed
coordinates [494, 47 521] of the actual output point poutput in Figure 4.5. However, the
coordinates of pinterim match with the inverse thin-plate spline transformation that can
be seen in Figure 4.4. Information to this matter can be found in the class reference of
vtkImageReslice10. This class is responsible for the three slices along different axes
(XY, YZ, XZ) of the given dataset.
The thin-plate spline transform has to be forwarded to vtkImageReslice by means
of the function SetResliceTransform() and is then applied to a resampling grid.
This grid has been defined by the reslice axes (here XZ) and the output origin [0, 0, 0],
spacing [10.5, 10.5, 10.5] and extent [0 799, 0, 74, 0, 799], and has therefore the size of
the slice. Here, ‚output‘ designates the 2D slice that has been cut out of the original 3D

10http://www.vtk.org/doc/nightly/html/classvtkImageReslice.html, Accessed:
20.08.2017

29

http://www.vtk.org/doc/nightly/html/classvtkImageReslice.html

4. Implementation

Figure 4.5: The transformed and the original slice from Figure 4.3 have been laid on
top of each other. The green cross, poutput with the coordinates [494, 47, 521], marks
the transformed position of the point pinput from Figure 4.3. Despite the stabilizing fix
landmarks around the centre of distortion, it is visible, that also the pixels of the rest of
the slice image are slightly transformed.

volume data (input).
Now, it is important to know, that applying the transform to this resampling grid is equal
to applying the transform’s inverse to the input volume data, which is done automatically
in VTK. That is because warp transforms are typically inverted. The inverting is done
by Newton’s method11, an iterative technique with which the inverse coordinates of a
point are approximated.
With this new insight, the preliminary output point coordinates [519, 47, 456] of pinterim
can be explained. Actually, pinterim is calculated for the resampling grid, whereas the
transformation that is visible for the user on the resliced image is the inverted one. To
get the final output point poutput, that corresponds to the inverted transformation which

11https://www.vtk.org/doc/nightly/html/classvtkWarpTransform.html#
afc508fcd1567aeefd48454187fb5154b, Accessed: 20.08.2017

30

https://www.vtk.org/doc/nightly/html/classvtkWarpTransform.html#afc508fcd1567aeefd48454187fb5154b
https://www.vtk.org/doc/nightly/html/classvtkWarpTransform.html#afc508fcd1567aeefd48454187fb5154b

4.3. Functionality of the Fish-Eye Lens

is visible for the user, the preliminary point coordinates [519, 47, 456] of pinterim have to
be inverted too. The algorithm for inverting a point can be looked up in the source code
of the vtkWarpTransform12 class, and will not be explained any further, since it shall
only explain the correctness of the calculated preliminary output point by the thin-plate
spline algorithm (and is not part of the thin-plate spline algorithm itself).519

47
456

 invert point with Newton’s method−−−−−−−−−−−−−−−−−−−−−→

494
47
521

 = poutput (4.26)

4.3 Functionality of the Fish-Eye Lens

In this section, the TPS2 is integrated into the remaining fish-eye lens implementation
which is responsible for the user interaction with the lens. The functionality of the lens
is illustrated with the aid of three pseudocode examples.
In Algorithm 4.1, the activation and deactivation of the fish-eye lens is shown. Whenever
the fish-eye lens is not activated, it can be enabled by pressing the O-key on the keyboard.
This only works, when the mouse has been clicked at least once inside the respective slice
view.
Then, all the necessary variables for the transform and the appearance of the fish-eye lens
are initialized. The class names of the variables and their function are listed as follows:

• vtkRenderer13: the renderer of the current slice view is needed for drawing the
fish-eye lens onto the slice image.

• vtkThinPlateSplineTransform: the thin-plate spline transform that has been
described in the previous section.

• vtkPoints: 32 source and target landmarks are initialized.

• vtkRegularPolygonSource14: creates a regular polyline for the lens shape.

• vtkPolyDataMapper15: maps the polygonal lens shape to a graphic primitive so
it can be used by the actor.

• vtkActor16: is added to the renderer and represents the mapped lens shape in
the rendered scene, so the lens is visible for the user.

12https://github.com/Kitware/VTK/blob/master/Common/Transforms/
vtkWarpTransform.cxx, Accessed: 20.08.2017

13http://www.vtk.org/doc/nightly/html/classvtkRenderer.html, Accessed: 20.08.2017
14http://www.vtk.org/doc/nightly/html/classvtkRegularPolygonSource.html, Ac-

cessed: 20.08.2017
15http://www.vtk.org/doc/nightly/html/classvtkPolyDataMapper.html, Accessed:

20.08.2017
16http://www.vtk.org/doc/nightly/html/classvtkActor.html, Accessed: 20.08.2017

31

https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkWarpTransform.cxx
https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkWarpTransform.cxx
http://www.vtk.org/doc/nightly/html/classvtkRenderer.html
http://www.vtk.org/doc/nightly/html/classvtkRegularPolygonSource.html
http://www.vtk.org/doc/nightly/html/classvtkPolyDataMapper.html
http://www.vtk.org/doc/nightly/html/classvtkActor.html

4. Implementation

Algorithm 4.1: Activation and Deactivation of the fish-eye lens
1: fish-eye lens active ← false
2: renderer ← assign renderer of selected 2D slice view

Require: key on keyboard was pressed
3: if pressed key is O then
4: if fish-eye lens not active then
5: fish-eye lens active ← true
6: pass the mouse cursor position to the renderer
7: initialize all necessary variables for the fish-eye transform
8: update the parameters for the fish-eye transform (Algorithm 4.2)
9: else

10: fish-eye lens active ← false
11: remove lens from renderer of the 2D slicer view
12: transform data of the slicer back to normal
13: end if
14: end if

After the initialisation, the fish-eye lens transformation is calculated and rendered onto
the slice image, as depicted in Algorithm 4.2.
The cursor position is needed to get the centre of the transformation. The slicer data
(e.g. pores.mhd) is required to obtain the bounds (physical space) and the spacing of the
data.
The bounds are needed to retrieve the coordinates of the 32 source and target landmarks
in physical space and the spacing is needed to convert the slice number (which is in
pixel space) into physical space as well. The XY-slicer’s slice number corresponds to the
Z-coordinate of the slice image. For the pores.mhd dataset, the XY-slice view has 799
slices which corresponds to the size of the extent in the Z-dimension.
Having the size of the slice image in physical space, the landmarks’ positions can be
calculated. Around the fish-eye lens, there are two additional landmark circles (only
visible for debugging reasons) that aim to stabilize the transformation and try to keep
the distortion preferably inside the lens.
One stabilizing circle lies 15 pixels outside and around the lens, the other circle 80 pixels.
These two distances have turned out to be very efficient when it comes to keeping the
distortion restricted. The target landmarks of the lens circle lie around a circle (with
custom radius) inside the lens circle. Those landmarks are decisive for the appearance of
the transformation.
When all the landmarks have been calculated, they are passed to the thin-plate spline
transform, and the radius of the lens is set accordingly. Then, the slice view is updated
and the fish-eye lens becomes visible.

32

4.3. Functionality of the Fish-Eye Lens

Algorithm 4.2: Update fish-eye transform
Require: cursor position, slicer data, outer radius and inner radius

1: get bounds and spacing of slicer data
2: get slicer mode // mode is either XY, YZ or XZ
3: get the number of current slice

// calculating all 32 source and target landmarks for the thin plate spline transform
taking slicer mode and slice number into account

4: set 8 source and target landmarks around the border of the 2D slice image
5: for landmark 8 to 16 do
6: calculate a point every 45◦ around a circle 15 pixels outside the lens radius
7: set source and target landmark to that point
8: end for
9: for landmark 16 to 24 do

10: calculate a point every 45◦ around a circle 80 pixels outside the lens radius
11: set source and target landmark to that point
12: end for
13: for landmark 24 to 32 do
14: calculate a point every 45◦, around the lens radius and around the inner lens

radius
15: set source landmark to the point on the lens radius
16: set target landmark to the point on the inner lens radius
17: end for
18: (... code for drawing all the calculated source and target landmarks onto the data ...)

19: set the centre of the lens to the position of the mouse cursor
20: set the radius of the lens to outer radius
21: set the source and target landmarks for the transform
22: apply the transform to the slicer data
23: (update the slicer)

While the lens is active, the radius of the lens as well as the degree of distortion inside
the lens can be customized via keyboard input. Algorithm 4.3 is responsible for this
functionality.
In this implementation, a smooth adjustment of the radius and the distortion is not
possible due to the choice of the keyboard inputs. The radius of the fish-eye lens can be
changed by pressing the plus-key or the minus-key, the distortion can be changed
by pressing STRG + plus-key or STRG + minus-key. With these given interaction
options, smooth adjustments would be troublesome. Because of this, it has been decided
to change the radius and the distortion according to predefined intervals. The default
lens radius is 80 pixels but can be augmented to a maximum of 220 pixels and reduced
to a minimum of 2 pixels (in case of extremely small datasets), by steps of 10 pixels each.
If the radius is < 10 the radius changes by steps of 1 pixel.
The landmark circle inside the lens, that influences the degree of distortion, has its default
radius at 70 pixels. It can shrink down to a minimum of lens radius − 22 pixels for a
radius > 10. For a radius < 10 the minimum is 1 pixel. A distortion lens radius of <
lens radius − 22 with a radius > 10 would not make sense, since the distortion would
become too strong to be visually useful.
The possibility to reduce the lens radius to a minimum of 2 pixels was only offered for

33

4. Implementation

the sake of completeness so that also small datasets (e.g. 200× 50× 100) can be explored,
although most of the datasets are bigger than 800× 75× 800.
The maximum radius can reach the size of the lens radius, which means that no distortion
occurs. This radius is changed by steps of 2 pixels, for a radius < 10 by steps of 1 pixel.
It has to be noted, that a small distortion radius leads to a very strong distortion, whereas
a big distortion radius leads to very little up to no distortion. In Algorithm 4.3 the outer
radius is the lens radius and the inner radius is the radius for the distortion.

Algorithm 4.3: Adapting lens radius and degree of distortion
Require: key on keyboard pressed and fish-eye lens active

1: pass mouse cursor position to the renderer
2: if keyboard modifier STRG pressed then
3: if minus-key pressed then
4: if inner radius + 2.0 ≤ outer radius then
5: inner radius + 2.0
6: update parameters for fish-eye transform with new inner radius //

unmagnifies the distortion
7: end if
8: end if
9: if plus-key pressed then

10: if inner radius - 2.0 ≥ minimal inner radius then
11: inner radius - 2.0
12: update parameters for fish-eye transform with new inner radius // magnifies

the distortion
13: end if
14: end if
15: else if no keyboard modifier pressed then
16: if plus-key pressed then
17: if outer radius + 10.0 ≯ default outer radius + 140.0 then
18: outer radius + 10.0
19: inner radius + 10.0
20: minimal inner radius + 8.0
21: update parameters for fish-eye transform with new inner and outer radii //

magnifies lens
22: end if
23: end if
24: if minus-key pressed then
25: if outer radius - 10.0 ≮ default outer radius - 20.0 then
26: outer radius - 10.0
27: inner radius - 10.0
28: minimal inner radius - 8.0
29: if inner radius < minimal inner radius then
30: inner radius = minimal inner radius
31: end if
32: update parameters for fish-eye transform with new inner and outer radii //

unmagnifies lens
33: end if
34: end if
35: end if

34

CHAPTER 5
Evaluation and Results

In this chapter, applications of the fish-eye lens on different 3D volume datasets are
presented and the results are evaluated.
A colour transfer function has been applied to the 3D volume datasets to make them
easier to explore. For choosing optimal colour combinations for the transfer function
the online tool Colorbrewer 2.0 1 by Cynthia A. Brewer is used. Colorbrewer 2.0 takes
colour blindness into account and helps to select appropriate colour schemes for specific
purposes.
In the following, the purpose of the fish-eye lens is demonstrated with the help of three
different 3D volume datasets.

5.1 Rock Crystal Dataset

The layout of the open_iA main window is shown in Figure 5.1. It depicts the 3D
absorption contrast data of a rock crystal specimen. The fish-eye lenses have been
enabled in every slice view. The rock crystal specimen was scanned with the Bruker
SkyScan1294 2 Talbot-Lau grating interferometry X-ray computed tomography device3,
which allows simultaneous extraction of differential phase contrast as well as absorption
contrast and dark-field images. Dark cracks and pores inside the rock crystal can be
perceived in the different slice views. The rock crystal dataset has a size of 570×600×431
voxels and is scanned with a resolution of 22.8 microns.
In Figure 5.2 a 2D XY-slice image of the rock crystal is shown. The red circle on the left
marks a very small pore, which is barely visible. This pore is strongly magnified with

1http://colorbrewer2.org/, Accessed: 18.08.2017
2https://www.bruker.com/products/microtomography/in-vivo-micro-ct/

skyscan-1294/overview.html, Accessed: 19.08.2017
3https://www.bruker.com/products/microtomography/in-vivo-micro-ct/

skyscan-1294/technical-details.html, Accessed: 20.08.2017

35

http://colorbrewer2.org/
https://www.bruker.com/products/microtomography/in-vivo-micro-ct/skyscan-1294/overview.html
https://www.bruker.com/products/microtomography/in-vivo-micro-ct/skyscan-1294/overview.html
https://www.bruker.com/products/microtomography/in-vivo-micro-ct/skyscan-1294/technical-details.html
https://www.bruker.com/products/microtomography/in-vivo-micro-ct/skyscan-1294/technical-details.html

5. Evaluation and Results

Figure 5.1: The main window of open_iA, showing the 3D rendered volume data of a
rock crystal (top left). The XZ-slice view (top right), the YZ-slice view (bottom left)
and the XY-slice view (bottom right), each having the fish-eye lens activated.

the fish-eye lens in Figure 5.3.
By using the fish-eye lens, the shape of the pore is clearly visible. Since the pore has
been chosen to be in the centre of the lens, it is hardly distorted but magnified, (almost)
keeping its original shape, compared to the other contours of the crystal inside the lens
which get more and more distorted lengthwise and are squeezed together as they reach
the border of the lens.
The fish-eye lens works the same way in the other two slicers. Because the lenses are
already shown in the layout image of open_iA (see Figure 5.1), its demonstration on the
other two slice images is left out.

The fish-eye lens performs its transformation on the voxels itself, meaning that after a
transformation the voxel values are not correct anymore. This leads to the fact, that
calculations (e.g. distance measurements) cannot be made on the distorted dataset
without risking inaccurate results.
Furthermore, to achieve a preferably good magnification of a small detail, it is necessary
to always put this detail in the centre of the lens (at the position of the mouse cursor).
This guarantees that the detail’s shape (despite the distortion) stays nearly the same,
apart from the magnification. Whereas details away from the centre distort strongly and
their original shape is not maintained.

36

5.1. Rock Crystal Dataset

Figure 5.2: This is a close-up view of the XY-slice 215 of the rock crystal dataset. The
red circle marks a very small pore at the border of the crystal which is magnified with
the fish-eye lens in Figure 5.3.

Figure 5.3: The fish-eye lens magnifies the small pore for data exploration.

37

5. Evaluation and Results

5.2 Pore Dataset
The 3D pore volume dataset is already well-known, as it has been used in the previous
chapters as an example dataset.
The pore volume that can be seen in Figure 5.4 has been extracted from a carbon
fibre-reinforced polymer (CFRP) laminate specimen, using the proposed segmentation
pipeline by Reh et al. [RPK+12]. The specimen contains pores which are introduced
during the manufacturing process. The knowledge and specification of the pores, e.g.
shape, number, position and distribution is crucial for identifying the final material
properties (e.g. stiffness and strength) [WAG+16].
The CFRP specimen was scanned with a GE Phoenix Nanotom M 4, an X-ray computed
tomography (XCT) system. The pores dataset has a size of 800× 75× 800 voxels and is
scanned with a resolution of 22.8 microns.
Figure 5.5 depicts the XZ-slice 47. Again, a red circle marks very small pores that
are hard to perceive. However, in Figure 5.6, due to the fish-eye lens, the pores are
emphasized distinctively.

Figure 5.4: The 3D volume rendering of the segmented pores.

4https://www.gemeasurement.com/inspection-ndt/radiography-and-computed-tomography/
phoenix-nanotom-m-industrial-ct-3d-metrology-system, Accessed: 20.08.2017

38

https://www.gemeasurement.com/inspection-ndt/radiography-and-computed-tomography/phoenix-nanotom-m-industrial-ct-3d-metrology-system
https://www.gemeasurement.com/inspection-ndt/radiography-and-computed-tomography/phoenix-nanotom-m-industrial-ct-3d-metrology-system

5.2. Pore Dataset

Figure 5.5: XZ-slice 47 of the pore dataset. The three little pores marked with the red
circle are hardly visible.

Figure 5.6: With the magnification of the fish-eye lens the three pores are clearly
distinguishable.

39

5. Evaluation and Results

5.3 Fibre Dataset
As a last dataset example, a glass fibre-reinforced polymer (GFRP) specimen with a
polypropylene matrix (PP-SGF30) is presented. PP-SGF30 stands for polypropylene
with a glass fibre weight content of 30%. The glass fibres are segmented, which means
that every voxel belonging to a single fibre is mapped to a specific label. This information
can be useful for further analysis. Depending on the distribution, the length and the
alignment of individual glass fibres, characteristics such as stiffness, strength, ductility or
durability of the reinforced polymers can be obtained [WAL+14].
This specimen was also scanned with the GE Phoenix Nanotom M with a resolution of 2
microns and has a size of 400× 400× 400 voxels.
Figure 5.7 shows the 3D GFRP dataset with the segmented fibres. Figures 5.8 and 5.9
demonstrate the fish-eye lens on a cutout of the XY-slice, Figures 5.10 and 5.11 on a
cutout of the YZ-slice and Figures 5.12 and 5.13 on a cutout of the XZ-slice.

Figure 5.7: 3D rendering of the segmented glass fibres of the XCT scanned GFRP
specimen.

40

5.3. Fibre Dataset

Figure 5.8: Cutout of the XY-slice 157 of the GFRP dataset before enabling the fish-eye
lens. This slice mostly consists of fibres that are positioned orthogonally to the image
plane. The glass fibre detail to be magnified is marked.

Figure 5.9: Cutout of the XY-slice 157 of the GFRP dataset with fish-eye lens magnifica-
tion. The small glass fibre detail is now clearly noticeable.

41

5. Evaluation and Results

Figure 5.10: Cutout of the YZ-slice 199 of the GFRP dataset before enabling the fish-eye
lens. The tiny fibre part to the right inside the pink marked circle is going to be magnified.

Figure 5.11: Cutout of the YZ-slice 199 of the GFRP dataset with fish-eye lens magnifi-
cation.

42

5.3. Fibre Dataset

Figure 5.12: Cutout of the XZ-slice 170 of the GFRP dataset before enabling the fish-eye
lens. The focus is on the pink circled fibre parts.

Figure 5.13: Cutout of the XZ-slice 170 of the GFRP dataset with fish-eye lens magnifi-
cation. The formerly pink circled fibre parts are better visible now.

43

CHAPTER 6
Conclusion

In this thesis the implementation of a 2D fish-eye lens and its integration into the open
source software open_iA, a visual analysis and processing tool for X-ray computed tomog-
raphy datasets, has been presented. With the help of the thin-plate spline transform, it
was possible to achieve the characteristic transformation of a fish-eye lens. An exemplary
calculation of the thin-plate spline transform was performed on the coordinates of a point
from a 2D slice image. The fish-eye lens was then applied on three different datasets to
present and discuss its usability.
The major advantage of the fish-eye lens is the magnification of a region of interest without
losing the context to the surrounding area. This is due to the special transformation
of the lens that provides a smooth transition between the inside and the outside of the
lens. As a result, the magnification has to be the strongest in the centre of the lens.
Towards the borders of the lens the magnifications diminishes and the details around
the border of the lens get squeezed lengthwise. This deformation is an unpleasant side
effect which is consciously accepted in order to ensure the context-preserving feature of
the lens. However, the fish-eye lens enables to reveal very small features which would
be barely visible otherwise. As the thin-plate spline transform is applied to the voxel
positions, calculations based on the voxel grid are critical while the lens is activated,
since the voxel positions do not correspond to the original positions anymore. Therefore,
the fish-eye lens was mainly designed for visual exploration. Computations such as the
evaluation of the diameter of a pore or the length of a fibre would not work, since the
coordinates of the voxels are transformed.
Currently, the lens size and the degree of distortion can be magnified or diminished by
means of predefined intervals. In the future, it might be possible to add a dialog, where
the radius and the distortion can be entered manually.
Furthermore, the lens could be extended by offering different visualisations of the same
dataset inside the lens.

45

List of Figures

2.1 The ChronoLens is transforming the underlying content for better exploration. 3
2.2 Several Detail Lenses are arranged around the centre of the map and magnify

important POIs along the route. 4
2.3 DVR of an engine without (a) and with (b) magnification by the embedded

Magic Volume Lens. 4
2.4 The FLOWLENS visualizes the blood flow inside an aneurysm with the help

of streamlines. The flow pressure is depicted by the green saturation-coded
contour lines. 5

2.5 The strongly saturated parallel coordinate system makes it difficult to perceive
the lines on the left and right side (a). The Sampling Lens offers a clearer
view of the dense areas to perceive any hidden trends (b). 5

2.6 The car parts inside the lens are listed next to it. The heatmap chart
underneath every list entry describes the frequency (red = very frequent,
beige = less frequent) in which the names of the car parts appeared in certain
documents in an interval of 4 months. 6

2.7 Graph data without (a) and with the application of three EdgeLenses (b).
The blue points mark the centre of the lenses. The green and pink coloured
edges are ignored by the EdgeLenses and are not curved around the lenses. 7

2.8 The focus lies on the red-rimmed node (a). With a local edge lens, edges that
do not belong to the focused node are removed (b). Then, the Layout Lens
gathers all nodes adjacent to the focused node (c). Accumulated nodes in the
centre are spread by a fish-eye lens (d). 7

2.9 Cutout of the subway map of Washington D.C. The applied fish-eye lens
magnifies the focused area in the middle. On the border of the focused
area, the map is strongly distorted by the lens to permit a smooth transition
between the focused area and the context. 8

3.1 XZ-slice view of the pore dataset (pores.mhd) before (a) and after (b) activat-
ing the fish-eye lens (a ’cyan’ colour transfer function has been applied to the
data for better visibility). The orange circle represents the fish-eye lens. . . 11

3.2 XZ-slice view of the pore dataset (pores.mhd) with a fish-eye lens radius
of 150.0 pixels and very little distortion (a) and strong distortion (b). The
orange circle represents the fish-eye lens. 13

47

4.1 IDs’ and coordinates in physical space (bounds) and image space (extent) of
the 32 source and target landmarks depicted in Figure 4.2. The blue, orange
and yellow landmarks have identical source and target positions and serve
as stabilisation for the transform. The green source and target landmarks
are responsible for the actual lens distortion. Because of the XZ-slice, the Y
values are constant. The values between the brackets (x, y, z), represent the
same landmark coordinates but in image space. 19

4.2 Source (red) and target (green) landmarks of the thin plate spline transform.
The landmarks are arranged counter-clockwise and the landmarks’ IDs and
coordinates correspond to the values in Figure 4.1. 21

4.3 The red cross indicates the position of the point pinput that is taken for the
ForwardTransformPoint() function. The point’s x-y-z-coordinates in
image space are approximately [507, 47, 487]. In physical space they are
[5323.5, 493.5, 5113.5]. 28

4.4 The preliminary output point coordinates of pinterim correspond to the point
in this inversely transformed slice image. The inverse transform of the lens-like
magnification distortion results in a downsized distortion of the area inside
the lens. 29

4.5 The transformed and the original slice from Figure 4.3 have been laid on top
of each other. The green cross, poutput with the coordinates [494, 47, 521],
marks the transformed position of the point pinput from Figure 4.3. Despite
the stabilizing fix landmarks around the centre of distortion, it is visible, that
also the pixels of the rest of the slice image are slightly transformed. . . . 30

5.1 The main window of open_iA, showing the 3D rendered volume data of
a rock crystal (top left). The XZ-slice view (top right), the YZ-slice view
(bottom left) and the XY-slice view (bottom right), each having the fish-eye
lens activated. 36

5.2 This is a close-up view of the XY-slice 215 of the rock crystal dataset. The red
circle marks a very small pore at the border of the crystal which is magnified
with the fish-eye lens in Figure 5.3. 37

5.3 The fish-eye lens magnifies the small pore for data exploration. 37
5.4 The 3D volume rendering of the segmented pores. 38
5.5 XZ-slice 47 of the pore dataset. The three little pores marked with the red

circle are hardly visible. 39
5.6 With the magnification of the fish-eye lens the three pores are clearly distin-

guishable. 39
5.7 3D rendering of the segmented glass fibres of the XCT scanned GFRP speci-

men. 40
5.8 Cutout of the XY-slice 157 of the GFRP dataset before enabling the fish-eye

lens. This slice mostly consists of fibres that are positioned orthogonally to
the image plane. The glass fibre detail to be magnified is marked. 41

48

5.9 Cutout of the XY-slice 157 of the GFRP dataset with fish-eye lens magnifica-
tion. The small glass fibre detail is now clearly noticeable. 41

5.10 Cutout of the YZ-slice 199 of the GFRP dataset before enabling the fish-eye
lens. The tiny fibre part to the right inside the pink marked circle is going to
be magnified. 42

5.11 Cutout of the YZ-slice 199 of the GFRP dataset with fish-eye lens magnifica-
tion. 42

5.12 Cutout of the XZ-slice 170 of the GFRP dataset before enabling the fish-eye
lens. The focus is on the pink circled fibre parts. 43

5.13 Cutout of the XZ-slice 170 of the GFRP dataset with fish-eye lens magnifica-
tion. The formerly pink circled fibre parts are better visible now. 43

49

List of Algorithms

4.1 Activation and Deactivation of the fish-eye lens 32

4.2 Update fish-eye transform . 33

4.3 Adapting lens radius and degree of distortion 34

51

Bibliography

[BMe+14] R. Borgo, R. Maciejewski, I. Viola (editors, C. Tominski, S. Gladisch,
U. Kister, R. Dachselt, and H. Schumann. A survey on interactive lenses in
visualization. EuroVis State-of-the-Art Reports, Eurographics Association,
2014.

[Boo89] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition
of deformations. IEEE Trans. Pattern Anal. Mach. Intell., 11(6):567–585,
June 1989.

[Boo97] Fred L. Bookstein. Shape and the information in medical images. Comput.
Vis. Image Underst., 66(2):97–118, May 1997.

[CC13] M. W. Chang and C. Collins. Exploring entities in text with descriptive
non-photorealistic rendering. In 2013 IEEE Pacific Visualization Symposium
(PacificVis), pages 9–16, Feb 2013.

[CKB08] Andy Cockburn, Amy K. Karlson, and Benjamin B. Bederson. A review
of overview+detail, zooming, and focus+context interfaces. ACM Comput.
Surv., 41:2:1–2:31, 2008.

[Duc77] Jean Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces, pages 85–100. Springer Berlin Heidelberg, Berlin, Heidelberg, 1977.

[EBD05] Geoffrey Ellis, Enrico Bertini, and Alan Dix. The sampling lens: Making
sense of saturated visualisations. In CHI ’05 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’05, pages 1351–1354, New York,
NY, USA, 2005. ACM.

[FMH16] Bernhard Froehler, Torsten Möller, and Christoph Heinzl. Gemse:
Visualization-guided exploration of multi-channel segmentation algorithms.
35, 06 2016.

[GNBP11] Rocco Gasteiger, Mathias Neugebauer, Oliver Beuing, and Bernhard Preim.
The flowlens: A focus-and-context visualization approach for exploration of
blood flow in cerebral aneurysms. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2183–2192, December 2011.

53

[Hau06] Helwig Hauser. Generalizing Focus+Context Visualization, pages 305–327.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[HS17] Christoph Heinzl and S Stappen. Star: Visual computing in materials science.
36:647–666, 06 2017.

[JMI15] Hans J Johnson, Matthew M McCormick, and Luis Ibanez. The ITK Software
Guide Book 1: Introduction and Development Guidelines, 4th edition, 2015.
ISBN 9781-930934-28-3.

[KCJ+10] P. Karnick, D. Cline, S. Jeschke, A. Razdan, and P. Wonka. Route visualiza-
tion using detail lenses. IEEE Transactions on Visualization and Computer
Graphics, 16(2):235–247, March 2010.

[LA94] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Trans. Comput.-Hum. Interact.,
1(2):126–160, June 1994.

[Rob07] J. C. Roberts. State of the art: Coordinated multiple views in exploratory
visualization. In Fifth International Conference on Coordinated and Multiple
Views in Exploratory Visualization (CMV 2007), pages 61–71, July 2007.

[RPK+12] A. Reh, B. Plank, J. Kastner, E. Gröller, and C. Heinzl. Porosity maps: In-
teractive exploration and visual analysis of porosity in carbon fiber reinforced
polymers. Comput. Graph. Forum, 31(3pt3):1185–1194, June 2012.

[SB92] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’92, pages 83–91, New York, NY, USA, 1992. ACM.

[SB94] Manojit Sarkar and Marc H. Brown. Graphical fisheye views. Commun.
ACM, 37(12):73–83, December 1994.

[Shn96] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE Symposium on Visual
Languages, pages 336–343, Sep 1996.

[SML06] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualisation Toolkit,
4th edition, 2006. ISBN 978-1-930934-19-1.

[TAS09] Christian Tominski, James Abello, and Heidrun Schumann. Cgv—an inter-
active graph visualization system. Computers & Graphics, 33(6):660 – 678,
2009.

[WAG+16] J. Weissenböck, A. Amirkhanov, E. Gröller, J. Kastner, and C. Heinzl.
Porosityanalyzer: Visual analysis and evaluation of segmentation pipelines to
determine the porosity in fiber-reinforced polymers. In 2016 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 101–110, Oct
2016.

54

[WAL+14] J. Weissenböck, A. Amirkhanov, W. Li, A. Reh, A. Amirkhanov, E. Gröller,
J. Kastner, and C. Heinzl. Fiberscout: An interactive tool for exploring
and analyzing fiber reinforced polymers. In 2014 IEEE Pacific Visualization
Symposium, pages 153–160, March 2014.

[WCG03] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: an interactive method
for managing edge congestion in graphs. In IEEE Symposium on Information
Visualization 2003 (IEEE Cat. No.03TH8714), pages 51–58, Oct 2003.

[WGK10] Matthew Ward, Georges Grinstein, and Daniel Keim. Interactive Data
Visualization - Foundations, Techniques, and Applications. 01 2010.

[WZMK05] L. Wang, Y. Zhao, K. Mueller, and A. Kaufman. The magic volume lens: an
interactive focus+context technique for volume rendering. In VIS 05. IEEE
Visualization, 2005., pages 367–374, Oct 2005.

[ZCPB11] J. Zhao, F. Chevalier, E. Pietriga, and R. Balakrishnan. Exploratory analysis
of time-series with chronolenses. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2422–2431, Dec 2011.

55

	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the Art
	Prerequisites and First Overview
	Hard- and Software Components
	Integration of the Fish-Eye Lens into open_iA
	Concepts

	Implementation
	Used Classes and Functions
	Exemplary Calculation of the Thin-Plate Spline Transformation
	Functionality of the Fish-Eye Lens

	Evaluation and Results
	Rock Crystal Dataset
	Pore Dataset
	Fibre Dataset

	Conclusion
	List of Figures
	List of Algorithms
	Bibliography

